On the Random Generation and Counting of Matchings in Dense Graphs
نویسندگان
چکیده
In this work we present a fully randomized approximation scheme for counting the number of perfect matchings in a dense bipartite graphs, that is equivalent to get a fully randomized approximation scheme to the permanent of a dense boolean matrix. We achieve this known solution, through novel extensions in the theory of suitable non-reversible, Markov chains which mix rapidly and have a near-uniform distribution.
منابع مشابه
A genetic approach for the parallel almost-uniform generation and approximate counting of matchings
In the rst part of this work, we present an RNC uniform generator of matchings of any size in a graph. We achieve this by using a genetic system approach to parallelize the sequential random walk. Using similar techniques, we present a Randomized NC approximation for counting the number of perfect matchings in a dense bipartite graph. As a consequence we solve the problem of getting an RNC appr...
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملCoverings, matchings and paired domination in fuzzy graphs using strong arcs
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
متن کاملCounting Matchings with k Unmatched Vertices in Planar Graphs
We consider the problem of counting matchings in planar graphs. While perfect matchings in planar graphs can be counted by a classical polynomial-time algorithm [26, 33, 27], the problem of counting all matchings (possibly containing unmatched vertices, also known as defects) is known to be #P-complete on planar graphs [23]. To interpolate between the hard case of counting matchings and the eas...
متن کاملApproximately Counting Perfect Matchings in General Graphs
So far only one approximation algorithm for the number of perfect matchings in general graphs is known. This algorithm of Chien [2] is based on determinants. We present a much simpler algorithm together with some of its variants. One of them has an excellent performance for random graphs, another one might be a candidate for a good worst case performance. We also present an experimental analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 201 شماره
صفحات -
تاریخ انتشار 1998